vectơ chỉ phương và vectơ pháp tuyến

1. Vectơ chỉ phương của đàng thẳng

Định nghĩa : 

Bạn đang xem: vectơ chỉ phương và vectơ pháp tuyến

vectơ \(\vec{u}\) được gọi là vectơ chỉ phương của đường thẳng liền mạch \(∆\) nếu \(\vec{u}\) ≠ \(\vec{0}\) và giá bán của \(\vec{u}\) song tuy nhiên hoặc trùng với \(∆\)

Nhận xét :

- Nếu \(\vec{u}\) là một vectơ chỉ phương của đường thẳng liền mạch \(∆\) thì \(k\vec{u} ( k≠ 0)\) cũng là một trong vectơ chỉ phương của \(∆\) , bởi vậy một đàng thẳng có vô số vectơ chỉ phương.

- Một đường thẳng liền mạch trọn vẹn được xác lập nếu như biết một điểm và một vectơ chỉ phương của đường thẳng liền mạch bại liệt.

2. Phương trình thông số của đàng thẳng

- Phương trình thông số của đường thẳng liền mạch \(∆\) trải qua điểm \(M_0(x_0 ;y_0)\) và nhận vectơ \(\vec{u}  = (u_1; u_2)\) thực hiện vectơ chỉ phương là :

\(∆\) : \(\left\{\begin{matrix} x= x_{0}+tu_{1}& \\ y= y_{0}+tu_{2}& \end{matrix}\right.\)

-Khi \(u_1≠ 0\) thì tỉ số \(k= \dfrac{u_{2}}{u_{1}}\) được gọi là thông số góc của đường thẳng liền mạch.

Từ trên đây, tớ với phương trình đường thẳng liền mạch \(∆\) trải qua điểm \(M_0(x_0 ;y_0)\) và với thông số góc k là:

\(y – y_0 = k(x – x_0)\)

Chú ý: Ta đang được biết thông số góc \(k = \tan α\) với góc \(α\) là góc của đường thẳng liền mạch \(∆\) phù hợp với chiều dương của trục \(Ox\)

3. Vectơ pháp tuyến của đàng thẳng 

Định nghĩa: Vectơ \(\vec{n}\) được gọi là vectơ pháp tuyến của đường thẳng liền mạch \(∆\) nếu \(\vec{n}\)  ≠ \(\vec{0}\) và \(\vec{n}\) vuông góc với vectơ chỉ phương của \(∆\)

Nhận xét:

- Nếu \(\vec{n}\)  là một trong vectơ pháp tuyến của đường thẳng liền mạch \(∆\) thì k\(\vec{n}\) \((k ≠ 0)\) cũng là một trong vectơ pháp tuyến của \(∆\), bởi vậy một đường thẳng liền mạch với vô số vec tơ pháp tuyến.

- Một đường thẳng liền mạch được trọn vẹn xác lập nếu như biết một và một vectơ pháp tuyến của chính nó.

4. Phương trình tổng quát lác của đàng thẳng

Định nghĩa: Phương trình \(ax + by + c = 0\) với \(a\) và \(b\) ko mặt khác vày \(0\), được gọi là phương trình tổng quát lác của đường thẳng liền mạch.

Trường thích hợp quánh biết:

+  Nếu \(a = 0 => nó = \dfrac{-c}{b};  ∆ // Ox\) hoặc trùng Ox (khi c=0)

+ Nếu \(b = 0 => x = \dfrac{-c}{a}; ∆ // Oy\) hoặc trùng Oy (khi c=0)

+ Nếu \(c = 0 => ax + by = 0 =>  ∆\) trải qua gốc tọa độ

+ Nếu \(∆\) hạn chế \(Ox\) bên trên \(A(a; 0)\) và \(Oy\) bên trên \(B (0; b)\) thì tớ với phương trình đoạn chắn của đường thẳng liền mạch \(∆\) :

\(\dfrac{x}{a} + \dfrac{y}{b} = 1\)

5. Vị trí kha khá của hai tuyến đường thẳng

Xét hai tuyến đường trực tiếp  ∆1 và ∆

Xem thêm: they live in a house that was built in

có phương trình tổng quát lác theo lần lượt là :

a1x+b1y + c1 = 0 và a2x+b2y +c2 = 0

Điểm \(M_0(x_0 ;y_0)\)) là vấn đề công cộng của  ∆và ∆2  khi và chỉ khi \((x_0 ;y_0)\) là nghiệm của hệ nhị phương trình:

(1)  \(\left\{\begin{matrix} a_{1}x+b_{1}y +c_{1} = 0& \\ a_{2}x+b_{2}y+c_{2}= 0& \end{matrix}\right.\) 

Ta với những tình huống sau:

a) Hệ (1) với cùng một nghiệm: ∆cắt ∆2

b) Hệ (1) vô nghiệm: ∆// ∆2

c) Hệ (1) với vô số nghiệm: ∆1 \( \equiv \)∆2

6.Góc thân thiết hai tuyến đường thẳng

Hai đàng thẳng ∆và ∆cắt nhau tạo ra trở nên 4 góc.

Nếu ∆không vuông góc với ∆thì góc nhọn nhập số tứ góc này được gọi là góc thân thiết hai tuyến đường thẳng ∆và ∆2.

Nếu ∆vuông góc với  ∆thì tớ trình bày góc thân thiết ∆và ∆bằng  900.

Trường hợp  ∆và ∆song tuy nhiên hoặc trùng nhau thì tớ quy ước góc giữa  ∆và ∆bằng 00.

Như vậy góc thân thiết hai tuyến đường trực tiếp luôn luôn nhỏ hơn hoặc bằng  900  

Góc thân thiết hai tuyến đường thẳng ∆và ∆được kí hiệu là \(\widehat{(\Delta _{1},\Delta _{2})}\)

Cho hai tuyến đường thẳng:

1: a1x+b1y + c1 = 0 

2: a2x+b2y + c2 = 0

Đặt \(\varphi\) = \(\widehat{(\Delta _{1},\Delta _{2})}\)

\(\cos  \varphi\) = \(\dfrac{|a_{1}.a_{2}+b_{1}.b_{2}|}{\sqrt{{a_{1}}^{2}+{b_{1}}^{2}}\sqrt{{a_{2}}^{2}+{b_{2}}^{2}}}\)

Chú ý:

+ \({\Delta _1} \bot {\Delta _2} \Leftrightarrow {n_1} \bot {n_2}\) \( \Leftrightarrow {a_1}.{a_2} + {b_1}.{b_2} = 0\)

+ Nếu \({\Delta _1}\) và \({\Delta _2}\) có phương trình nó = k1 x + m1 và nó = k2 x + mthì  

\({\Delta _1} \bot {\Delta _2} \Leftrightarrow {k_1}.{k_2} =  - 1\)

7. Công thức tính khoảng cách từ 1 điểm đến chọn lựa một đàng thẳng

Trong mặt mũi phẳng lặng \(Oxy\) mang đến đường thẳng liền mạch \(∆\) với phương trình \(ax+by+c=0\) và điểm \(M_0(x_0 ;y_0)\)).

Xem thêm: công thức thể tích khối cầu

Khoảng cơ hội kể từ điểm \(M_0\) cho tới đường thẳng liền mạch \(∆\) kí hiệu là \(d(M_0,∆)\), được xem vày công thức

\(d(M_0,∆)=\frac{|ax_{0}+by_{0}+c|}{\sqrt{a^{2}+b^{2}}}\)

Loigiaihay.com